IKB 405 - Polarization in Spinnnaker

Applies to:

BFS-U3-51S5P-C (mono) & BFS-U3-51S5PC-C (color)

There are now Blackfly S models which feature Sony Polarsens on sensor polarization technology.
See here for information about Polarsens technology and some applications that it enables:
https://www.sony-semicon.co.jp/products_en/IS/sensor5/index.html

Here is a brief guide to getting started with BFS polarized cameras.

Mono Polarization Cameras

~ A

TN
D

Each pixel’s polarizing filter (C) is coated with an anti-reflective layer (B) and is positioned between the
microlens (A) and the light sensitive photodiode (E).

The physical layout of the polarized sensor is composed of an array of polarized quads. Each quad contains 4 pixels. Each of these four pixels has a wire-
grid polarizing filter layer.

The four angles polarization are : 90°, 45°, 135° and 0°. In the image above the angle label refers to the transmission angle which is perpendicular to the
wire grid.

Note that:

® The minimum transmission of polarized light occurs parallel to the wire-grid axis.
® The maximum transmission of polarized light occurs perpendicular to the wire-grid axis.

https://www.sony-semicon.co.jp/products_en/IS/sensor5/index.html

Blackfly S BFS-U3-5155P 17580005 x i

©)

L LA
NN —
I135 EE ID

In the above figure you can observe that when we zoom in to the pixel level of an image of partially polarized light we can see the effect of the polarizing
filter.

Enncathy § BRI 3105 1 TIEOG0S =0 x

We can also extract and group all pixels from each of the four quadrants using the quad algorithm and combine them to create a composite image as
shown above.

Color Polarization Cameras

Color polarization cameras also have an array of polarized quads but in addition they also have a Bayer filter.

Unlike traditional color cameras where the Bayer tile repeats every 2x2 pixels, color polarization Bayer tiles repeat every 4x4 pixels which creates a 4x4
"super pixel" as seen below.

I90
+
NN\
TR
N 135 &
N
Pixel Bayer Pattern Layout of four
polarization
angles: 90°, 45°,
135° and 0° at
each pixel Layout of the super-pixel of
polarization color camera

N
\\S

N\
NG
\N

NN

S

This "super pixel" is highlighted below in SpinView when the image display is zoomed in to the pixel level.

Blackfly S BFS-U3-5155PC 17458496 X |GGG

/ Acquisition Mode .
» (») @ f
/ . Continuous

Polarization Algorithms Available in SpinView for Windows

Note: HeatMap processing is only applicable to monochrome cameras.

Selecting a Polarized Pixel Format

SpinView polarization features are only available for Polarized8 (for monochrome cameras) and BayerRGPolarized8 (on color cameras)

Mono

Pixel Format Monol v |

Binning Selector Monaol

Binning Horizontal Monalb

inni Oz
"3 Monol2Packed

Binning Horizontal Mode Monollp

Binning Vertical Menol2p

Binning Vertical Mode L
Polarized10p

D'E:Imﬂtll:‘ﬁ SelettGr pDh”zcd“Ep

Decimation Horizontal Made Polarized16

Color

Fel Format

Binning Selector

Binning Horizontal
Binning Honzontal Mode
Binning Vertical

Binning Vertical Mode

Decimation Selector

Displaying Image Processed with Polarization Algorithms

View polarization features by right clicking on the image display window and hovering over Polarization.

Enable Draw Image

Save Image to Disk

Save Image Options
Enable Stretch-To-Fit

Draw Center Cross-Hair
Change Crosshair Color
Configure Crosshair
Configure Loupe

Image Rotation Control

Coler-Processing Methods

BayerfRIGE

BayerRiGE
BayerRIG10
BayerRG10p
BayerRG12p
BayerRGPolarizeds

BayerRiGPolanzed10p
BayerRGPolarized12p
BayerRGPolarized16

Polarization

Off

Enable Heatmap
Configure Heatmap Gradient

Enable Inference Label

Configure Inference Label
Hold Image

Display Incomplete Images
Limit Displayed FP3

Quad

Side-by-side view of all extracted polarized quadrants

Quad

Glare Reduction
DolP

AolP

Scaled DolP
Scaled AolP

Stokes' Parameters

Clockwise starting at the top left: 90°, 45°, 0°, 135°

Bsaifly § IFE-UD- 31559 TTRAON0S =k

Stokes Parameters
SO

S0 =10 + 190

The sum of the intensities of the horizontally and vertically polarized pixels
This represents the intensity of the light beam.

S1

S0 =10-190
The difference between the intensities of the horizontally and vertically polarized pixels

S2

S0 =145 - 1135
The difference between the intensities of the 45° and 135° polarized pixels.

Greyscale

Left to right : SO, S1, S2

HeatMap

Left to right : SO, S1, S2

In some cases it may be useful to view the displayed images as heatmaps. Where a color from a gradient is assigned to a pixel according to it's intensity.
For example in the case of Stokes values, colors from the upper end of the gradient represent high stokes values.

To enable heatmaps, right click on the image display window and select Enable Heatmap.

Enable Draw Image

Save Image to Disk

Save Image Options 2
Enable Stretch-To-Fit

Draw Center Cross-Hair

‘Change Crosshair Calor

‘Configure Crosshair

Configure Loupe

Image Rotation Control 3

Color-Processing Methods 3 \
i

Paolarization [

~ | Enable Heatmap | i
Conf| The source image is converted to a Mono® pixel format and a heatmap image is created

Enable Inference Label

Configure Inference Label
Hold Image

Display Incomplete Images

Limit Displayed FPS

As of SpinView for Spinnaker 1.27 and above, heatmaps are available for all pixel formats.

If heatmap is enabled and the current pixel format is not Mono8, the images are converted to Mono8 before converting to the heatmap image that is
displayed.

The heatmap settings are configurable by selecting Configure Heatmap Gradient in the display window settings.

Enable Draw Image

Save Image to Disk
Save Image Options b
Enable Stretch-To-Fit
Draw Center Cross-Hair
Change Crosshair Color
Configure Crosshair

Configure Loupe

Image Rotation Control
Color-Processing Methods
Polarization

+ | Enable Heatmap

Configure Heatmap Gradient

Enable Inference Label

Configure Inference Label
Hald Image

Display Incomplete Images

Limit Displayed FPS

There are options to configure the the heatmap gradient as well as what range of pixel intensities (expressed as % Radiance) to apply the color gradient to.

®> HeatMap Settings >

HeatMap Gradient Selection

|l

HeatMap Range (% Radiance)

I 1

0% 100%

| Reset || ok |

Degree of Linear Polarization (DoLP)

The proportion of light that is linearly polarized for a given pixel quadrant.

VS12 + §22
S0

DoLP sample image with heatmap applied:

DoLP =

Angle of Linear Polarization (AoLP)

The angle at which linearly polarized light oscillates for a given pixel quadrant.

AP—l o S2
0 —zar an 3]

AoLP sample image with heatmap applied:

Glare Reduction

When un-polarized light is incident upon a dielectric surface, the reflected portion of the light

is partially polarized according to Brewster's law. Selecting the filtered pixel that most effectively
blocks this polarized light in each pixel quadrant reduces glare in the overall image. Since one pixel
is selected from each 2x2 polarized pixel quadrant the resulting image will be a quarter of the raw
image's resolution.

Left: View from a non-polarized camera

Right: View from a camera with on sensor polarization running Glare Reduction in SpinView

Saving the Displayed Images

Spinnaker 1.19.0.22 and above support saving any displayed image in SpinView.
This can be accessed through the same right-click menu on the image display window

+ | Enable Draw Image

Save Image to Disk

Save Image Options Save Raw Image

Enable Stretch-To-Fit Save Displayed image

Draw Center Cross-Hair

Chanaa Cracchair Calar

Note: This does not apply to the image recording window.

Polarization APl Example

Note: There is a complete Polarization C++ example that comes packaged with Spinnaker

Configure a Polarized Pixel Format
As with SpinView, to access the Spinnaker SDK Polarization options you will need to use an 8 bit polarization format.

For monochrome polarization cameras, this is Polarized8. For color polarization cameras this is BayerRGPolarized8.

Using the ImageUtilityPolarization class to apply polarization algorithms

Algorithms that are available through the Spinnaker C++ SDK are as follows:

Quad

The extract polar quadrant algorithm allows you to extract an image comprised of one of the four polarization angles.

I magePtr ImageUtilityPol arization::ExtractPol ar Quadrant (const | nagePtr& srclnmage, const Pol ari zati onQuadr ant
desi redQuadr ant);

Where PolarizationQuadrant is defined as follows:

enum Pol ari zati onQuadr ant

{

/** The 0 degree of polarization. */
QUADRANT_I 0,

/** The 45 degree of polarization. */
QUADRANT_| 45,

/** The 90 degree of polarization. */
QUADRANT_I 90,

/** The 135 degree of polarization. */
QUADRANT_I 135
b

The source image pixel format must be Polarized8 or BayerRGPolarized8.
The destination image pixel format must be Mono8 or BayerRG8 respectively.
The destination image height and width will be half that of the source image.

Glare Reduction

The glare reduction algorithm will produce a glare reduced image by selecting the darkest pixel value from each 2x2 pixel polarization quadrant.

I magePtr ImageltilityPol arization::Created areReduced(const |nagePtr& srclnage);

The source image pixel format must be Polarized8 or BayerRGPolarized8s.
The destination image pixel format will be Mono8 or BayerRG8 respectively.
The destination image height and width will be half that of the source image.

Stokes Parameters

The create stokes algorithms allows you to compute the stokes parameters from a raw polarization image.

I magePtr ImageUtilityPol arization:: CreateStokesSO(const |magePtr& srclmage, const Col or Processi ngAl gorithm
col or Processi ngAl g = DEFAULT);

I magePtr ImageUtilityPol arization:: CreateStokesSl(const |magePtr& srclmage, const Col or Processi ngAl gorithm
col or Processi ngAl g = DEFAULT) ;

ImagePtr I nmageltilityPol arization::CreateStokesS2(const | magePtré& srclmage, const Col or Processi ngAl gorithm
col or Processi ngAl g = DEFAULT) ;

The source image pixel format must be Polarized8 or BayerRGPolarized8.
The destination image pixel format will be Mono16s or RGB16s respectively.
The destination image height and width will be half of the source image.

The bounds on the stokes parameters are as follows:

0<=S0<=510

-255 <= S1 <= 255

-255 <= S2 <= 255

Since these bounds are outside of the range of what can be held in an 8 bit format, the stokes parameter images will be stored in a 16 bit format.

To access the raw stokes values you can do the following:

const auto* stokeslnmageData = static_cast<short*>(stokesl magePtr->CGetData());

Degree of Linear Polarization (DoLP)

I magePtr I nageltilityPol arization::CreateDol p(const | magePtré& srclmage, const Col or Processi ngAl gorithm
col or Processi ngAl g = DEFAULT) ;

The source image pixel format must be Polarized8 or BayerRGPolarized8.
The destination image pixel format will be Mono32f or RGB32f respectively.
The destination image height and width will be half of the source image.
The theoretical bounds on the DoLP image are:

0<=DolLP <=1

These values are computed as float and as such the image data is stored in a 32 bit format.

To access the raw DoLP data for an image you can do the following:

const auto* dol pl nageData = static_cast<fl oat*>(dol pl nagePtr->GetData());

Angle of Linear Polarization (AoLP)

I magePtr ImageUtilityPol arization::CreateAol p(const | magePtr& srclmage, const Col or Processi ngAl gorithm
col or Processi ngAl g = DEFAULT) ;

The source image pixel format must be Polarized8 or BayerRGPolarized8.
The destination image pixel format will be Mono32f or RGB32f respectively.
The destination image height and width will be half of the source image.

The angle of linear polarization in stored in radians and theoretical bounds on the AoLP image are:

-pi/2 <= AoLP <= pi/2

This is around:

-1.57 <= AoLP <=1.57

These values are computed as float and as such the image data is stored in a 32 bit format.

To access the raw AoLP data for an image you can do the following:

const auto* aol pl negeData = static_cast<float*>(aol pl negePtr->CGetData());

Normalizing the Raw Image Data

Available in Spinnaker 1.25+

Image normalization can be used to map image data from one range of values (Source) to another range of values (Destination).
Each pixel in the source image will be mapped to a pixel in the destination image according to the following equation:
DestPixelValue= ((maxDest - minDest) * (SourcePixelValue - minSrc) / (maxSrc - minSrc)) + minDest

(Normalization Formula)

One instance where this is especially useful is when you need to convert image data from floating point computed values to integer pixel values that can
be displayed as an image.

For example using the ImageUltilityPolarization you can compute the angle of linear polarization (AoLP) for each 2x2 pixel quadrant of a raw polarized
image:

const auto aol plnage = I mageUtilityPol arization:: Creat eAol p(pRawPol ari zedl mage) ;

The pixel values will be in radians in the range of -pi/2 to pi/2. The aolplmage's image data ("pixels") will now be composed of an array of 32 bit floating
point values (pixel format = Mono32f for mono or RGB32f for color), of size one quarter of the original pRawPolarizedimage. One value for each polarized
quadrant in pRawPolarizedimage.

If we want to display the AoLP image as a mono8 image for example then we need to map each floating point value in the range of [-1.5708, 1.5708] to an
integer value in the range [0, 255].

To accomplish this we will use the ImageUtility's CreateNormalized function as follows:

const auto normalizedl mage = I mageltility:: CreateNormalized(aol pl mage, Pixel Format_Mno8, |mageUtility::
ABSOLUTE_DATA_RANGE) ;

Properties that are important for us in image normalization according to the formula (Normalization Formula) are:
Destination bounds(minDest, maxDest)
Source bounds: (minSrc, maxSrc)

The options for creating a normalized images are:

static I magePtr CreateNormalized(const |InagePtr& srclnmage, const Pixel Format Enuns dest Pi xel For mat,

Sour ceDat aRange srcDat aRange = | MAGE_DATA_RANGE) ;

static | magePtr CreateNormalized(const |magePtr& srclnmage, const double mn, const double max, SourceDat aRange
srcDat aRange = | MAGE_DATA_ RANGE) ;

static I magePtr CreateNormalized(const |magePtr& srclnmage, const double mn, const double nmax, const

Pi xel For mat Enuns dest Pi xel For mat, Sour ceDat aRange srcDat aRange = | MAGE_DATA RANGE) ;

For the destination bounds:

We can choose to supply a destination pixel format, destination max & min values, or both. If we do not supply a destPixelFormat then the source pixel
format will be used for the destination image. If we do not supply a min and max then the entire range of the destination pixel format will be used.

For the source bounds:

We have the choice to supply an optional enum value called SourceDataRange. If we do not supply it then the default will be IMAGE_DATA_RANGE.

Here is an excerpt from the ImageUstility.h file that explains the SourceDataRange options:

/**

* | mage normalization source data options.

* Options to nornelize the source data based on the max and min values present in the specific

* image (inmage data) or the theoretical abosolute max and min inmage data values for the inmage type (absolute
data).

* By default the abosolute max and min values for an image are the max and nin values allowable for

* the inmage's pixel format. An exception to this is for sone conputed inage data formats such as

* AoLP, DoLP and Stokes, where the absolute max and min are dependant on the al gorithm used.

* For a given pixel, normalization is done by:

* NormalizedVal ue = ((nmaxDest - minDest) * (PixelValue - minSrc) / (maxSrc - minSrc)) + m nDest
*/

enum Sour ceDat aRange

{
/** Normalize based on the actual nmax and min values for the source image. */
| MAGE_DATA_RANGE,
/** Nornmalize based on the theoretical max and min values for the source inage. */
ABSOLUTE_DATA_RANGE,
/** Normalize based on the actual min and theoretical max values for the source inmge. */
| MAGE_M N_ABSOLUTE_MAX,
/** Nornalize based on the theoretical nmin and actual max values for the source inmge. */
ABSOLUTE_M N_I MAGE_MAX

b

So in the case of an AoLP image we will choose to normalize the image based on the ABSOLUTE_DATA_RANGE, and use the default destination image
bounds so that the minimum and maximum theoretical angles [-pi/2, pi/2] will be mapped to the bounds [0, 255] of the destination image. This is important
for if we want to turn the image into a heat map to get a better visualization of the angle of polarization in different parts of the image. For a heat map a
color is assigned to a pixel value and so we want to know what color corresponds to what angle. For example the lowest color corresponds to the lowest
possible angle (not the lowest angle in the image) so we can accurately determine the angle at any location based on the color of the pixel. If we
normalized based of the IMAGE_DATA_RANGE then different colors could correspond to different angles in different images.

Note on absolute data range:

For some computed image types whose data bounds are not the pixel format bounds, the absolute data range will be assigned when the image is created.
In the case of AoLP images the computed data bounds are [-pi/2, pi/2] or equivalently [-1.5708, 1.5708] approximately. Whereas since the pixel data type
is 32 bit float, the bounds for the pixel format would be [-3.40282e+38, 3.40282e+38] and if we were to normalize this data range into [0, 255] when all the
actual values were bound by [-1.5708, 1.5708] then we would not get any usable data.

For images produced with the AoLP, DoLP and Stokes algorithms, the absolute data range is as follows:

ImageUtilityPolarization::CreateAolp -> [-1.5708, 1.5708] approximately

ImageUtilityPolarization::CreateDolp ->[0.0, 1.0]

ImageUtilityPolarization::CreateStokesSO0 -> [0, 510]

ImageUtilityPolarization::CreateStokesS1 -> [-255, 255]

ImageUtilityPolarization::CreateStokesS2 -> [-255, 255]

In all other cases if ABSOLUTE_DATA_RANGE is used then the pixel format theoretical max and min will be used as the source min/max

For SourceDataRange =IMAGE_DATA_RANGE, prior to normalization the max and min pixel values for the specific image will be determined and used as
the srcMin and srcMax in the calculation. The benefit of this is that the entire range of the destination image's pixel format will be utilized. The actual
minimum/maximum pixel value in the source will become the theoretical minimum/maximum pixel value in the destination. For example if we have a
mono8 image and the minimum pixel value in the image is 20 (pixel A) and the maximum pixel value is 100 (pixel B). If we are normalizing to a mono16

image then pixel A" (hormalization of pixel A) will be 0 and pixel B' (normalization of pixel B) will be 65535. All values in between 20 and 100 in the source
image will be normalized accordingly to be between 0 and 65535.

Creating a Heat Map from an Image

It may be useful to visualize some images by mapping their pixel intensities to a gradient of colors.

For example with AoLP and DoLP images it can be easier to visualize the angle or degree of polarization when it is displayed as a heat map.

This way the range of angles/degrees present in the AoLP/DoLP images can be mapped to a gradient of colors which can help to visualize these values.

To do this we will use the Spinnaker SDK ImageUtilityHeatmap:

static I magePtr CreateHeat map(const | nmagePtr& srclmage);

Mono Example
Here is an example of how we can create an AoLP image, normalize the image into the mono8 pixel format, create a heat map image and then save it.

const auto pAol plmage = ImageUtilityPol arization:: Creat eAol p(pRawPol ari zedl mage) ;

const auto pAol pNornalizedl mage = Imageltility:: CreateNornalized(pAol pl nage, Pixel Format_Mno8, Inageltility::
Sour ceDat aRange: : ABSOLUTE_DATA_RANCE) ;

const auto pAol pHeat mapl mage = I mageltilityHeat map: : Cr eat eHeat map(pAol pNor mal i zedl mage) ;

pAol pHeat mapl mage- >Save(" Aol pHeat Map. j pg");

Color Example
For color polarization cameras we have to normalize to PixelFormat_RGB8, then convert the normalized image to mono8 before using it to create a
heatmap:

const auto pAol pl nege = I mageUtilityPol ari zation:: CreateAol p(pRawPol ari zedl mage) ;

const auto pAol pNornalizedlnage = I mageUtility:: CreateNormalized(pAol pl mage, Pixel Format_RGB8, |nmageUtility::
Sour ceDat aRange: : ABSOLUTE_DATA_RANGE) ;

const auto pAol pHeat mapl mage = I nmageltilityHeat map: : Cr eat eHeat map(pAol pNor mal i zedl mage- >Convert

(Pi xel For mat _Mono8));

pAol pHeat mapl nage- >Save(" Aol pHeat Map. j pg");

It is also possible to set the low and high colors used for the heat map gradient. By default it is set from HEATMAP_BLACK to HEATMAP_WHITE.

As an example here is how to configure the default setting:

I mageUti | it yHeat map: : Set Heat mapCol or G adi ent (I mageUti | i t yHeat map: : HEATMAP_BLACK, |nmageUtilityHeat map::
HEATVAP_V\HI TE) ;

The heat map can also be manipulated to focus on a certain range of values. Using this you can have the heat map color gradient span a certain
percentage of the input image's intensity values.

By default the color gradient will span the whole pixel format range of the source image data. From 0% to 100%. If the srcimage image was mono8 this
would mean 0 to 255. The SetHeatmapRange takes in values in percent.

Here is how to set the full range:

I mageUtilityHeat map: : Set Heat mapRange(0, 100);

To focus on a certain range of AoLP angles for example you will have to map a range of angles [-pi/2 , pi/2], to a range of percent [0, 100]. You will then
input the percent values into ImageUtilityHeatmap::SetHeatmapRange

Permissions: Public
Related tickets
Related bugs

Other resource

	IKB 405 - Polarization in Spinnnaker

